Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(10): e2207076, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36583605

RESUMO

During solid-state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid-state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state-of-the-art Ni-rich layered oxides (LiNi1-x-y Cox Mny O2 , NRNCM) as cathode materials for lithium-ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron-based X-ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature-dependent reaction kinetics, the diffusivity of solid-state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high-energy/power density lithium-ion batteries.

2.
Nanomaterials (Basel) ; 11(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467054

RESUMO

The effective approach for coloration and chromatic sensing of electrospun cellulose fabrics with a natural colorant, curcumin, is demonstrated. To achieve high surface area, the morphology of fiber was controlled to have rough and porous surface through an electrospinning of a cellulose acetate (CA) solution under optimized electrospinning parameters and solvent system. The resulting CA fibers were treated with a curcumin dye/NaOH ethanol solution, in which deacetylation of the CA fiber and high-quality coloration with curcumin were simultaneously achieved. As a control, a cotton fiber with similar diameter and smooth surface morphology was treated by the same method, resulting in poor coloration quality. The difference can be attributed to high surface area as well as trapping of dye molecules inside of cellulose fiber during deacetylation. Both fibers were further utilized for a chromatic sensing application for specific toxic gases. The incorporated curcumin dye responded to hydrogen chloride and ammonia gases reversibly via keto-enol tautomerism, and, as a consequence, the color was reversibly changed between reddish-brown and yellow colors. The cellulose fiber fabricated by the electrospinning showed ten times higher and two times quicker responsiveness compared to curcumin-colored cotton fiber sample prepared with the same immersion method.

3.
Nano Lett ; 19(12): 8811-8820, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31771329

RESUMO

Wetting Na metal on the solid electrolyte of a liquid Na battery determines the operating temperature and performance of the battery. At low temperatures below 200 °C, liquid Na wets poorly on a solid electrolyte near its melting temperature (Tm = 98 °C), limiting its suitability for use in low-temperature batteries used for large-scale energy-storage systems. Herein, we propose the use of sparked reduced graphene oxide (rGO) that can improve the Na wetting in sodium-beta alumina batteries (NBBs), allowing operation at lower temperatures. Experimental and computational studies indicated rGO layers with nanogaps exhibited complete liquid Na wetting regardless of the surface energy between the liquid Na and the graphene oxide, which originated from the capillary force in the gap. Employing sparked rGO significantly enhanced the cell performance at 175 °C; the cell retained almost 100% Coulombic efficiency after the initial cycle, which is a substantial improvement over cells without sparked rGO. These results suggest that coating sparked rGO is a promising but simple strategy for the development of low-temperature NBBs.

4.
ACS Appl Mater Interfaces ; 11(3): 2917-2924, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30580514

RESUMO

Wetting of the liquid metal on the solid electrolyte of a liquid metal battery controls the operating temperature and performance of the battery. Liquid sodium electrodes are particularly attractive because of their low cost, natural abundance, and geological distribution. However, they wet poorly on a solid electrolyte near its melting temperature, limiting their widespread suitability for low-temperature batteries to be used for large-scale energy storage systems. Herein, we develop an isolated metal-island strategy that can improve sodium wetting in sodium-beta alumina batteries that allows operation at lower temperatures. Our results suggest that in situ heat treatment of a solid electrolyte followed by bismuth deposition effectively eliminates oxygen and moisture from the surface of the solid electrolyte, preventing the formation of an oxide layer on the liquid sodium, leading to enhanced wetting. We also show that employing isolated bismuth islands significantly improves cell performance, with cells retaining 94% of their charge after the initial cycle, an improvement over cells without bismuth islands. These results suggest that coating isolated metal islands is a promising and straightforward strategy for the development of low-temperature sodium-ß alumina batteries.

5.
Nanoscale ; 6(6): 3296-301, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24509529

RESUMO

Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).


Assuntos
Carbono/química , Corantes/química , Microesferas , Pontos Quânticos/química , Energia Solar , Compostos de Estanho/química , Fibra de Carbono , Técnicas Eletroquímicas , Eletrodos , Nanofibras/química
6.
Phys Chem Chem Phys ; 14(13): 4620-5, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22362094

RESUMO

The sea urchin TiO(2) (SU TiO(2)) particles composed of radially aligned rutile TiO(2) nanowires are successfully synthesized through the simple solvothermal process. SU TiO(2) was incorporated into the TiO(2) nanoparticle (NP) network to construct the SU-NP composite film, and applied to the CdS/CdSe/ZnS quantum-dot-sensitized solar cells (QDSSCs). A conversion efficiency of 4.2% was achieved with a short-circuit photocurrent density of 18.2 mA cm(-2) and an open-circuit voltage of 531 mV, which corresponds to ∼20% improvement as compared with the values obtained from the reference cell made of the NP film. We attribute this extraordinary result to the light scattering effect and efficient charge collection.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Titânio/química , Compostos de Zinco/química , Animais , Fontes de Energia Elétrica , Eletrodos , Fotoquímica , Ouriços-do-Mar , Energia Solar
7.
ACS Nano ; 4(12): 7315-20, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21050014

RESUMO

We demonstrate a field-effect nonvolatile memory device made of a ferroelectric copolymer gate nanodot and a single-walled carbon nanotube (SW-CNT). A position-controlled dip-pen nanolithography was performed to deposit a poly(vinylidene fluoride-ran-trifluoroethylene) (PVDF-TrFE) nanodot onto the SW-CNT channel with both a source and drain for field-effect transistor (FET) function. PVDF-TrFE was chosen as a gate dielectric nanodot in order to efficiently exploit its bipolar chemical nature. A piezoelectric force microscopy study confirmed the canonical ferroelectric responses of the PVDF-TrFE nanodot fabricated at the center of the SW-CNT channel. The two distinct ferroelectric polarization states with the stable current retention and fatigue-resistant characteristics make the present PVDF-TrFE-based FET suitable for nonvolatile memory applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...